Retinal genes are differentially expressed in areas of primary versus secondary degeneration following partial optic nerve injury
نویسندگان
چکیده
BACKGROUND Partial transection (PT) of the optic nerve is an established experimental model of secondary degeneration in the central nervous system. After a dorsal transection, retinal ganglion cells (RGCs) with axons in ventral optic nerve are intact but vulnerable to secondary degeneration, whereas RGCs in dorsal retina with dorsal axons are affected by primary and secondary injuries. Using microarray, we quantified gene expression changes in dorsal and ventral retina at 1 and 7 days post PT, to characterize pathogenic pathways linked to primary and secondary degeneration. RESULTS In comparison to uninjured retina Cryba1, Cryba2 and Crygs, were significantly downregulated in injured dorsal retina at days 1 and 7. While Ecel1, Timp1, Mt2A and CD74, which are associated with reducing excitotoxicity, oxidative stress and inflammation, were significantly upregulated. Genes associated with oxygen binding pathways, immune responses, cytokine receptor activity and apoptosis were enriched in dorsal retina at day 1 after PT. Oxygen binding and apoptosis remained enriched at day 7, as were pathways involved in extracellular matrix modification. Fewer changes were observed in ventral retina at day 1 after PT, most associated with the regulation of protein homodimerization activity. By day 7, apoptosis, matrix organization and signal transduction pathways were enriched. Discriminant analysis was also performed for specific functional gene groups to compare expression intensities at each time point. Altered expression of selected genes (ATF3, GFAP, Ecel1, TIMP1, Tp53) and proteins (GFAP, ECEL1 and ATF3) were semi-quantitatively assessed by qRT-PCR and immunohistochemistry respectively. CONCLUSION There was an acute and complex primary injury response in dorsal retina indicative of a dynamic interaction between neuroprotective and neurodegenerative events; ventral retina vulnerable to secondary degeneration showed a delayed injury response. Both primary and secondary injury resulted in the upregulation of numerous genes linked to RGC death, but differences in the nature of these changes strongly suggest that death occurred via different molecular mechanisms.
منابع مشابه
Partial Optic Nerve Transection in Rats: A Model Established with a New Operative Approach to Assess Secondary Degeneration of Retinal Ganglion Cells
Previous studies have shown that the secondary degeneration of retinal ganglion cells (RGCs) occurs commonly in glaucoma. Partial optic nerve transection is considered a useful and reproducible model. Compared with other optic nerve injury models used commonly for assessing secondary degeneration, e.g. complete optic nerve transection and optic nerve crush models, the partial optic nerve transe...
متن کاملP129: Use of Stem Cells to Regenerate Degenerative Optic Nerve
Stem cells are undifferentiated cells that have the ability to convert to different types of cells and after dividing, they can produce their own cells or other cells. Axons of the retinal ganglion cells, from the optic nerve. These cells lose the ability to regenerate themselves before birth. Optic nerve degeneration can result from various causes including increased intraocular pressure, comp...
متن کاملMechanisms of secondary degeneration after partial optic nerve transection
Secondary degeneration occurs commonly in the central nervous system after traumatic injuries and following acute and chronic diseases, including glaucoma. A constellation of mechanisms have been shown to be associated with secondary degeneration including apoptosis, necrosis, autophagy, oxidative stress, excitotoxicity, derangements in ionic homeostasis and calcium influx. Glial cells, such as...
متن کاملOptic nerve transection in monkeys may result in secondary degeneration of retinal ganglion cells.
PURPOSE Interest in neuroprotection for optic neuropathies is, in part, based on the assumption that retinal ganglion cells (RGCs) die, not only as a result of direct (primary) injury, but also indirectly as a result of negative effects from neighboring dying RGCs (secondary degeneration). This experiment was designed to test whether secondary RGC degeneration occurs after orbital optic nerve i...
متن کاملExpression of Inducible Heat Shock Proteins Hsp27 and Hsp70 in the Visual Pathway of Rats Subjected to Various Models of Retinal Ganglion Cell Injury
Inducible heat shock proteins (Hsps) are upregulated in the central nervous system in response to a wide variety of injuries. Surprisingly, however, no coherent picture has emerged regarding the magnitude, duration and cellular distribution of inducible Hsps in the visual system following injury to retinal ganglion cells (RGCs). The current study sought, therefore, to achieve the following two ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 13 شماره
صفحات -
تاریخ انتشار 2018